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The behaviour of wall-bounded shear layers that can be represented by a Blasius profile is
studied with reference to very low frequency excitation. The whole shear layer executes
a heaving motion, which is referred to as the Klebanoff mode. This has been observed
experimentally for a long time, but no theoretical explanation was available so far. Here some
theoretical results are presented which indicate that such low frequency excitation produces
three-dimensional disturbance waves whose wave lengths are very large compared to the
shear-layer thickness. This, and other properties of such a wave system, explains the observed
Klebanoff mode. ( 1997 Academic Press Limited
1. INTRODUCTION

TRANSITION from laminar to turbulent flow is associated initially with spatio-temporal
growth of disturbances in the shear layer known as Tollmien—Schlichting (TS) waves
(Schlichting 1977). TS waves excited by moderate frequency sources have wavelengths
comparable to the shear-layer thickness. However, the situation is qualitatively different for
low frequency excitations, as shown in Gaster et al. (1994), who investigated the flow field
due to a shallow oscillating bump, where the frequency of oscillation is very low (2 Hz). For
this case no instability waves were observed; instead, the whole boundary layer executed
heaving motion. It is worth mentioning that similar such experiments were performed
earlier by Taylor (1939) and Klebanoff (unpublished). Klebanoff called this the breathing
mode of motion. There is a resurgence of interest in this problem in recent times, and it is
now referred to in the literature as the Klebanoff mode.

There are two noticeable features of the experiments reported by Gaster et al. (1994).
Firstly, the mean flow field is adequately represented by the Blasius profile and, for the
parameter ranges applicable, the two-dimensional instability studies do not reveal the
presence of any eigen-solutions that decay as one approaches the edge of shear layer.
Secondly, the disturbance field is three-dimensional but it propagates predominantly in the
streamwise direction. It is easy to see that if the disturbance fields have very large
wavelengths then the experimental results will only indicate a heaving motion for a small
test-section length—as in all the reported experiments. In Gaster et al. (1994) the measure-
ment stations were located at 70 and 105 boundary layer thicknesses and were therefore
expected to be in the far-field of the oscillating bump. Unlike the receptivity analysis of
Sengupta et al. (1994), one can perform the usual stability analysis to study the far field.
0889—9746/97/070845#09 $25.00/fl970101 ( 1997 Academic Press Limited
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The interesting aspect of the Klebanoff mode of motion is that although the mean flow is
two-dimensional, the flow does not support a two-dimensional disturbance field. This has
led Gaster et al. (1994) to comment that a proper mathematical account of these disturbances
has not yet appeared. Here we show for the first time that while two-dimensional distur-
bance waves are not supported, three-dimensional disturbances are valid solutions, with the
same qualitative features as the experimentally observed ones.

2. FORMULATION

We present the formulation with reference to a three-dimensional disturbance field for
two-dimensional mean flow, along with a parallel flow approximation. As the generated
waves evolve spatially, it is not sufficient to investigate the two-dimensional disturbance
field and invoke Squire’s theorem. The disturbance field is characterized by the following
disturbance normal velocity:
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0

the circular frequency of
excitation, and Br the line along which the Bromwich integral is performed int he complex
plane.
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where the spanwise wavelength is twice the tunnel width. For such cases
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The Fourier-Laplace transform / in equation (2) is obtained from the solution of the
Orr-Sommerfeld equation given by
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In equation (3) º(y) and ¼(y) are the parallel mean flow. Re is the Reynolds number
based on the displacement thickness of the boundary layer. The present investigation shows
that for the very low frequency excitation two-dimensional modes cease to exist for the
Blasius boundary layer, and hence we have investigated the three-dimensional flow field.
For a given Reynolds number and excitation frequency, the streamwise wavenumber has
been located here as an eigenvalue after fixing the spanwise wave number. The spanwise
wave number has been decided based on the experimental conditions of Gaster et al. (1994).
The eigenvalues are located using an extension of the compound matrix method following
the general methodology given in Sengupta et al. (1994).
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3. RESULTS AND DISCUSSION

For all the calculations we have used the compound matrix method in double precision,
taking 1600 uniformly distributed points for a maximum Blasius coordinate of g"12.
While the method of Mack (1976) is used for approximately locating the eigenvalues, these
have been located exactly by an eigenvalue finder. The accuracy of the method has already
been demonstrated in Sengupta et al. (1994).

Some details of the experimental conditions of Gaster et al. (1994) are given briefly. A flat
plate was mounted in the test-section of a low disturbance wind tunnel which is 3)5 m long
and 0)91 m by 0)91 m in cross-section. The three-dimensional velocity field was created by
a circular bump of 20 mm diameter which was located 400 mm from the leading edge of the
plate. At the location of the bump the undisturbed boundary layer had a thickness of
d*"0)99 mm. Based on this thickness and free-stream speed of 18)10 m/s the Reynolds
number is found to be 1196. The circular bump was oscillated at a frequency of 2 Hz, which
makes the non-dimensional circular frequency (u

0
) equal to 6)248]10~4. The span of the

test-section is 920 (approximately) times d*, and the largest spanwise wavelength that can
be supported is twice this. This is the rationale for fixing the lower limit of spanwise wave-
number, b

0
, and the corresponding value is 3)41777]10~3. From Figure 11 of Gaster et al.

(1994) one sees that most of the energy is carried by only the first ten modes—where these
modes in Gaster et al. (1994) are different from the fundamental and its harmonics used in
the present formulation. This corresponds to nb

0
"0)7854—a value up to which the

present investigation is extended.
It is seen that the two-dimensional modes disappear as the circular frequency is reduced

below a critical level. To show the relative roles of various modes at all frequencies, the real
and imaginary part of the wavenumbers (a

r
, a

l
) are plotted in Figure 1(a,b) against the

nondimensional frequency for a Reynolds number of 1000. The three modes shown are the
same as those that were identified and tabulated in Sengupta et al. (1994). The associated
phase speed and group velocity of these modes are shown in Figure 2(a,b). All the modes
shown here display discontinuous behaviour as the frequency is decreased. The reason for
this discontinuous behaviour is not understood, and it deserves further attention.

If the fluid dynamical system is excited at a frequency less than this frequency (u
d
) we

obtain a negative value of a
r
for which the group velocity is negative. Thus these waves at

frequencies less than u
d

travel upstream. The corresponding high negative values of a
i

indicate that these waves are highly damped. Thus it is seen that there are no downstream-
propagating discrete eigen-solutions for two-dimensional forcing, for a frequency value less
than 0)0026 for Re"100 or 0)0022 for Re"1196.

This prompted us to investigate whether the Blasius profile supports three-dimensional
downstream-propagating spatial modes. The spatial eigenvalues are located in the same
manner as was done in Sengupta et al. (1994) following the method due to Mack (1976).
Once the eigenvalues are located, the streamwise and spanwise component of the group
velocity, »

g
, is obtained numerically from the following expression:
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The numerical evaluation of the components of group velocity requires three eigenvalue
evaluations. The wavenumber, damping rate, phase speed and x and z components of the
group velocity are given in Figures 3(a,b) and 4(a,b,c) as a function of the spanwise



Figure 1. (a) Real wavenumber of three distinct eigenmodes plotted against frequency of excitation at
Re"1000. (b) Imaginary wavenumber of three distinct eigenmodes plotted against frequency of excitation at
Re"1000. (1) TS mode; (2) second mode; (3) third mode. Dotted curve corresponds to upstream propagating

mode.



Figure 2. (a) Phase speed of three distinct eigenmodes plotted against frequency of excitation at Re"1000. (b)
Group velocity of three distinct eigenmodes plotted against frequency of excitation at Re"1000. (1) TS mode; (2)

second mode; (3) third mode. Dotted curve corresponds with upstream propagating mode.



Figure 3. (a) Streamwise wavenumbers of the detected modes as a function of spanwise wavenumber. (b)
Streamwise decay rates of the detected modes as a function of spanwise wavenumber. —, Mode 1; ) ) ) ) ) ) , mode 2;

- - - -, mode 3; )))))) ,mode 4; — —, mode 5.
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wavenumber for the detected modes. It is clearly evident that all the excited modes are
damped. Far away from the exciter, only the effect of the least damped modes (fourth and
fifth) will be recorded. Here the least damped modes have wavelengths of the order of 104
times d*. The experiments of Gaster et al. (1994) measured only up to 500 d* downstream of



Figure 4. (a) Phase speeds of the detected modes as a function of spanwise wavenumber. (b) Streamwise
component of group velocities of the detected modes as a function of spanwise wavenumber. (c) Cross flow
component of group velocities of the detected modes as a function of spanwise wavenumber. —, Mode 1; ) ) ) ) ) ,

mode 2; - - - - , mode 3; )))))) , mode 4; — —, mode 5.
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the exciter, and hence it appeared that the whole boundary layer was heaving. Also, the
directions of disturbance propagation of the fourth and fifth modes are predominantly in
the x-direction, since the z-component of the group velocity is negligibly small.

For increasing spanwise wavenumbers, one can see that the last two modes are the least
damped ones and these are dominant in describing the disturbance field away from the



Figure 4. (Continued ).
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exciter. The disturbance waves will propagate predominantly in the streamwise direction,
since the streamwise group velocity is much larger than the spanwise component.

As the spanwise wavenumber increases, newer streamwise modes will keep appearing.
However, these newer modes have the largest decay rate (by two orders of magnitude higher
than the least damped modes) and when the spanwise wavenumber increases, the decay
rates of these modes do not change appreciably (results not shown here). The important
spanwise wave number range—as indicated in Gaster et al. (1994)—is covered in these
figures, a noteworthy feature of which is that the plotted quantities do not show large
variations for the plotted spanwise modes. For the streamwise wavenumber all the spanwise
harmonics produce disturbance waves of very large wavelength and whose appearance
would be that of a heaving motion. Also, the plotted streamwise decay rate is lowest for the
two predominant modes, and such a wave-train will exhibit very little streamwise decay.
Add to this the fact that the generated wave-trains have extremely small phase speeds, and
the waves would appear almost static. This has prompted Gaster et al. (1994) to state that
for the parameter values used here the motion can be considered to be essentially quasistatic. It
is convenient to introduce a periodic perturbation for purely experimental reasons. The
disturbance would propagate mainly in the streamwise direction, as the streamwise group
velocity magnitude is orders of magnitude higher than spanwise group velocity. The relative
importance of the spanwise modes could only be ascertained by studying the receptivity
aspect of the excitation—as was done for a two-dimensional disturbance field in Sengupta
et al. (1994). Results are obtained for wall excitation at even lower frequencies, and all of
them have similar qualitative characteristics.

Finally, we would like to discuss the intensity and phase profiles of the disturbance field.
The intensity profile within the boundary layer indicates that if the TS waves are created,
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then for large y these modes will decay as exp[!Ja2#n2b2
0
y] and the largest value of

b considered in Figures 3(a,b) and 4(a,b,c) will correspond to n"231. As far as the phase of
the disturbance field is concerned, this is determined by a

r
and, since the values for the

predominant modes are of the order of 10~4, the phase will not change at all with plotted
heights—as also seen experimentally in Gaster et al. (1994).
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